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Abstract: In the Nordic countries (Denmark, Finland, Iceland, Norway and Sweden), the Urban
Green Infrastructure (UGI) has been traditionally targeted at reducing flood risk. However, other
Ecosystem Services (ES) became increasingly relevant in response to the challenges of urbanization
and climate change. In total, 90 scientific articles addressing ES considered crucial contributions to the
quality of life in cities are reviewed. These are classified as (1) regulating ES that minimize hazards
such as heat, floods, air pollution and noise, and (2) cultural ES that promote well-being and health.
We conclude that the planning and design of UGI should balance both the provision of ES and their
side effects and disservices, aspects that seem to have been only marginally investigated. Climate-
sensitive planning practices are critical to guarantee that seasonal climate variability is accounted for
at high-latitude regions. Nevertheless, diverging and seemingly inconsistent findings, together with
gaps in the understanding of long-term effects, create obstacles for practitioners. Additionally, the
limited involvement of end users points to a need of better engagement and communication, which
in overall call for more collaborative research. Close relationships and interactions among different
ES provided by urban greenery were found, yet few studies attempted an integrated evaluation.
We argue that promoting interdisciplinary studies is fundamental to attain a holistic understanding
of how plant traits affect the resulting ES; of the synergies between biophysical, physiological and
psychological processes; and of the potential disservices of UGI, specifically in Nordic cities.

Keywords: urban green infrastructure; ecosystem services; Nordic countries; urban climate; heat;
flood; air pollution; well-being; health; end users

1. Introduction

Studies from all across the globe have shown that the Urban Green Infrastructure
(UGI) holds the potential to increase the urban resilience to climate change and to multiple
hazards, from floods and heat waves to anthropogenic air pollution and noise. These
benefits have been commonly known as Ecosystem Services (ES). UGI offers also more
sustainable solutions for water management and food production, among other natural
amenities that promote both biodiversity and the life quality of urban dwellers (e.g., [1–8]).

Despite efforts to include these ES in urban management [9], cities have received
less attention than other ecosystems, for example wetlands and forests [10], in major
international initiatives for the valuation of ES [11–14]. Some benefits that are relevant
in the urban context, such as health-related ones, are therefore not well captured and
represented in common ES classification systems [14], notwithstanding recent attempts [6].
Moreover, city specificities, namely climate, physiography and population, add an extra
complexity to the valuation of ES.

In the Nordic countries (Denmark, Finland, Iceland, Norway and Sweden), the UGI
has been traditionally targeted at reducing stormwater peak flow and runoff volume
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during heavy rainfall [15]. However, the record hot summer of 2018 in Scandinavia, and
projections of 2–4 ◦C increased temperatures of the hottest days in Northern Europe [16],
have raised the awareness of the potential health effects of heat waves, stimulating the
interest for the capacity of nature-based solutions to reduce heat stress. In parallel, these
hazards may be amplified by ongoing urbanization (e.g., [17]) due to changes in the form
and function of the landscape (see [18] for more details). Moreover, urban growth poses
additional societal, economic and environmental risks (e.g., [19]) that will ultimately impact
the well-being and health of the population (see, e.g., Figures A and B in [11]).

While the growing interest for the ES provided by urban nature has motivated a
plethora of studies (e.g., [1–8]), there is a lack of a comprehensive retrieval, synthetization
and appraisal of the existing knowledge on the role of UGI specifically for the conditions
of Nordic cities. Furthermore, although holistic evaluations of both the services and
disservices of UGI have been proposed [3], the latter are frequently neglected or less well
understood, which may compromise the implementation of UGI solutions by end users [15].
Examples include the build-up of traffic-related air pollution hot-spots in street canyons
due to reduced ventilation [20]), or the exclusion of pollen grains allergenicity as a selection
criterion in urban planning [3]).

In this context, our study evaluates the current state of knowledge and identifies gaps
on (1) the regulation of climate, urban heat, floods, air pollution and noise, and on (2) the
promotion of well-being and health, commonly designated as cultural ES, specifically in
the Nordic countries. These ES are considered crucial contributions to the quality of life in
cities [10], justifying the topic choice for this review. In particular, we aim to answer the
following research questions:

(1) In addition to flood regulation, have other ES of UGI emerged in the research
panorama across the Nordic countries?

(2) Is there a solid scientific evidence of the (regulating/cultural) benefits commonly
attributed to UGI?

(3) Is there an equivalent understanding of the potential co-benefits and disservices?
(4) Are there scientific gaps that may hinder the implementation of UGI solutions in this

region?

2. Methods

The systematic review schematically shown in Figure 1 considered peer-reviewed
articles published in English from January 2008 to March 2018 in scientific journals indexed
to Web of Science Core Collection, counting at the date a total of 20.5 million records. The
eligibility criteria consisted of (1) studies conducted in cities of Denmark, Finland, Iceland,
Norway and Sweden; (2) including any form of urban vegetation and plant species; and (3)
addressing regulating and/or cultural ES according to the classification and definitions
adapted from [11,12,14]. Aiming to limit the scope of the analysis, we have deliberately
restricted the use of medical and epidemiological terminology in the search string (see
Table A1 in Appendix A). Relevant metadata was compiled for each article using the
database structure shown in Table A2.
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3. Results

From the process described in Figure 1, 90 scientific articles were selected for full
review. These were then distributed into regulating and cultural ES following the classifica-
tion presented in Figure 2. Negative impacts, known as disservices, were also compiled
and analyzed.
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Figure 2. Main Ecosystem Services (ES) and disservices, their processes and effects covered by the
review. ES classification adapted from [11,12,14].

3.1. Metadata
3.1.1. Research Topic

Topic wise, regulating and cultural ES are addressed in a similar number of articles
(Figure 3). Nearly half investigate more than one topic, in some cases multiple ES are
valued with the objective of supporting routine planning processes (e.g., [21]). The spider
diagram reveals the emphasis on the effects of green spaces on wellbeing and psychological
health (cultural ES), as also towards the regulation of local and global climate. The emission
of pollen is the disservice most frequently addressed in Nordic cities.
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3.1.2. UGI Type and Research Method

Figure 4 identifies a clear focus on urban parks and forests, which despite morpholog-
ical and functional differences are often treated indistinctively in the literature. Street trees
are also common, being mostly included in small-scale heat-related studies, while the use
of allotment gardens expresses a distinguishing characteristic of Nordic cities. Green roofs
have a relevant role within flood control management.
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Figure 4. Distribution of number of articles by Urban Green Infrastructure (UGI) type and research
method. “nd” stands for unspecified or undetermined (e.g., green spaces).

An extensive number of surveys and interviews, processed with statistical and GIS
(Geographical Information System) tools, have collected the people’s perceptions of well-
being in relation to nature experiences. Measurement campaigns, complemented by
observations from existing sites, are more frequently used in the analysis of regulating
ES than numerical modelling, either at local or regional scales, while GIS methods are
common in the analysis of nature accessibility and ES valuation.

3.1.3. Spatiotemporal Scales of the Analysis

The largest fraction of works (38%) in our assessment have been focused in Swedish
cities, notably on local climate and psychological health, as depicted in Figure 5. Benefits to
well-being or in the control of floods have driven substantial research in Denmark, while in
Finland the focus lies on climate and health. Expectably, few publications address Icelandic
cities, but the representativeness of Norwegian works is proportionally low. The country
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capital dominates as preferred research location (Helsinki 87%, Copenhagen and Oslo
67%), with the exception of Sweden where Gothenburg is more frequently addressed (50%,
against 23% for Stockholm).
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A prevalence of studies at the scale of the neighborhood (e.g., parks and forests)
and the city is clear in Figure 6. The spatial resolution, which applies predominantly to
modelling studies, varies typically between 1 and 10 m or above 100 m, with very high
resolution (below 1 m in grid size) being almost absent in our review. There is a tendency
for research, especially in air quality, to take between 1 and 3 months.
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3.2. Ecosystem Services Provision
3.2.1. Climate Regulation

Long-term direct flux measurements in Helsinki using the eddy covariance technique
indicate a clear dependence of carbon dioxide (CO2) exchange on the surface cover, with
the tower surroundings acting as an overall source of carbon (C), except the more vegetated
sector during the summer [22,23]. Urban CO2 budget studies in this city and other climate
regions reveal a clear decrease of CO2 exchange with increasing fraction of natural area, as
a result of a combination of factors that include the photosynthetic uptake, pointing to 80%
as the natural fraction needed for a city to reach C-neutrality [24].

The provision of regulating ES varies intensively across cities, but also between the
urban core and its hinterland [25], revealing important mismatches in ES supply and
demand [26]. The comparison of more than 300 urban European areas highlights Sweden
and Finland for their potential to provide above-ground C storage and evapotranspiration
(a proxy for urban heat regulation capacity), as a result of the high proportion of urban
forest, the lower population density and the inclusion of UGI in urban planning [25]. These
results indicate that compact cities, proposed as a solution for reducing urban greenhouse
gases (GHG) emissions, are not necessarily optimal for the provision of regulating ES.
A study in Espoo, Finland, concluded that cities with a large fraction of single-family
houses having gardens with trees have the largest C sink potential [27]. This type of cities
will, however, lead to longer transport distances and thus increased GHG emissions if
CO2-neutral transport services are not utilized.

Meteorological observations conducted on street trees in Gothenburg during summer
reveal an average conversion of 30% (amounting to 206 W m−2) of midday’s incoming
solar radiation into latent heat flux due to tree transpiration [28]. Despite this energy loss,
the authors concluded that a cooling effect of tree transpiration was not observed during
the day and that its intensity varied greatly with species and location. In the same city,
the cooling capacity of urban nature, the so-called Park Cool Island (PCI), was quantified
as 0.81 ◦C during daytime in the warm season [29], similarly to the average of 0.94 ◦C
reviewed by Bowler et al. [30] for different climatic regions. The strongest cooling (around
1.5 ◦C) was observed on the hottest periods, stressing the potential relevance of this effect
during heat waves and in a warmer future climate. However, this maximum PCI intensity
is clearly lower than earlier observations conducted in Sweden (cf. [5]).

Notwithstanding the indications of a limited effect of leaf transpiration rate on daytime
warming rates or air temperature [28], heat stress can be significantly reduced by street
trees shading [31]. In clear and calm summer days, such cooling effect is well captured
by detailed maps of mean radiant temperature (Tmrt) simulated with the radiation model
Solweig [32–35]. During heat-stress conditions, Tmrt is shown to decline almost linearly as
a function of increasing vegetation cover [35]. Depending on the location and size of trees,
average Tmrt can drop by up to 30 ◦C, reducing the number of hours per year with severe
heat conditions (Tmrt above 60 ◦C) by 40 [36].

From a climate-sensitive planning and design perspective, some studies [31,34,36]
conclude that deciduous trees should be preferred over evergreen at high latitude cities,
aiming at reducing the blockage of solar radiation in wintertime. Because even defoli-
ated trees present relatively low transmissivity of direct solar radiation (40 to 52% in the
study by [31]), a “mosaic” of outdoor urban spaces is preferable. Such combination of
shaded/sunlit areas and distinct ventilation patterns within short walk distances will
ultimately enhance and prolong the use of outdoor spaces [33,36].

3.2.2. Water Runoff Regulation

The literature shows that blue-green solutions are used in the Nordic countries to
retain stormwater and surface runoff in the example of the Copenhagen’s cloudburst
management plan, where Sustainable Urban Drainage Systems (SUDS), such as parks
and playgrounds, can be flooded during heavy rainfall, while serving as recreational
spaces in dry weather [37]. The integration of open drainage basins in urban recreational



Int. J. Environ. Res. Public Health 2021, 18, 1219 7 of 19

areas is likely a better adaptation strategy than larger sewer pipes or local infiltration
units [38]. In addition, green spaces provide monetarily-measurable ES related to urban
runoff management, a value that increases when benefits from improved water quality are
added [39].

A popular case study is the Augustenborg neighborhood, located in Malmö (Sweden),
where runoff was disconnected from the combined sewer systems in the late 1990s due
to frequent basement flooding. Modelling of a cloudburst registered in 2014 shows 70%
less flooded area after retrofitting with a blue-green stormwater system, which contributed
to a controlled flooding. Peak flows in the surrounding pipe-systems were reduced by
approximately 80% and levelled out the runoff [40]. In Copenhagen, estimates indicate
that 60% of a 15 km2 sewer catchment could be disconnected using SUDS that include
green roofs, rain gardens, bioswales, soakaways, or wet/dry basins, thereby reducing the
combined sewer overflows to the local stream [41]. However, from the comparison of
adaptation strategies in Copenhagen and Beijing regarding flood control, an unbalance
between conventional and nature-based solutions was identified as a result of political
pressure for fast results, a lack of suitable green spaces, and insufficient experience with
these alternative solutions [42].

Street trees transpiration is also a potentially relevant factor in urban stormwater
management. A 4-year-long study in Helsinki [43] indicated that the average water use of
Alnus glutinosa f. pyramidalis trees exceeded 50% of the precipitation with only 20% canopy
cover, while for Tilia × vulgaris a cover of 60–70% was necessary to reach such rate.

Several of the reviewed papers deal with the hydrological performance of green roofs.
Such technical solutions have integrated the urban stormwater management in Nordic
countries with the purpose of reducing runoff volume and peak flows, avoiding sewage
pipe system overflow. Annual runoff volume from three extensive Sedum roofs in Odense
and Copenhagen, Denmark, was estimated as 43–68% of the total annual precipitation,
with the thickest substrate and drainage layer (6–8 cm) having the best performance in
peak flow reduction [44]. Peak time delay was found to vary greatly depending on rainfall
intensity, with the lowest delay observed for the rainfall events with the highest return
period.

In a comparison of green roofs performance in Norway, Sweden, Iceland and the
UK [45], the warmest and driest locations reached the highest retention of stormwater,
58% of the annual precipitation, against 17% in the coldest and wettest regions. However,
the wettest places attained the highest annual retention in absolute value. It is also worth
noting that all locations showed a considerable retention of stormwater during the summer,
ranging from 52 to 91%.

3.2.3. Air Quality Regulation

The effect of urban vegetation on air quality was investigated at a number of sites
in Lahti and Helsinki, Finland [46,47], each site consisting of a pair of sampling units
located in a tree covered area and in an adjacent open area. No significant differences
between the two sites were detected in the concentration of nitrogen dioxide (NO2) or
anthropogenic volatile organic compounds (VOCs). For particulate matter (PM), however,
the deposition fluxes (a proxy for PM10 concentration) were significantly lower in the tree-
covered sites, suggesting that the UGI is effective in reducing PM10 concentrations. The
difference in concentrations between tree covered and open sites was similar in summer
and winter indicating that the possible improvement of air quality was not caused by the
trees’ foliage. Higher concentrations of all investigated polycyclic aromatic hydrocarbons
(PAHs) were found at the tree covered sites during summer. During winter, some of
the PAHs displayed a contrasting pattern, with significantly lower concentrations at the
tree-covered sites. Another study [48] confirmed that there were no significant differences
in the concentration of gaseous pollutants, namely NO2, ozone (O3) and VOCs, between
vegetated and open areas at identical distances from a road in the Helsinki metropolitan
area, while PM deposition (interpreted as coarse PM concentrations) was significantly lower
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at the vegetated sites. However, none of the observed vegetation properties (canopy closure,
tree number and size, ground vegetation) correlated significantly with the magnitude of the
difference between PM deposition at vegetated and open locations, hence the mechanism
behind PM uptake by UGI in Nordic cities remains partly unresolved. Clearly enhanced
concentrations of NO2 were found both in front and inside green belts compared to
concentrations at the same distance from the road but in open areas [49]. It was not possible
to discern any effect on the NO2 concentrations behind the green belts. These findings were
observed both during winter and summer. These studies refute the hypothesis that UGI,
mostly in the form of deciduous trees, reduces local concentrations of gaseous pollutants
in Finnish cities.

In contrast, significantly lower NO2 (and particle-bound PAH concentrations) were
reported at a vegetated site compared to an adjacent, tree-less, site at similar distance
from a busy road in Gothenburg, Sweden [50]. Lower NO2 were also reported inside a
forest patch in Gothenburg compared to a co-located open site [51]. The vegetated site
was, however, located slightly further from the major road compared to the open site. The
authors [51] noted that the impact on the NO2 differences between the two sites did not
vary systematically over time, although the sampling largely covered the period of leaf
senescence. As reported both in [51] and [50], no effect on local O3 concentrations could be
detected from stands of broadleaved trees in Gothenburg.

The tree species had different efficiencies with regards to PM uptake in a nursery
along a busy motorway outside Stavanger, Norway [52]. Pine (Pinus spp.) and birch (Betula
pendula) were among those with particularly high accumulation, although particles of
different sizes were taken up with distinct efficiency depending on tree species. Similar
methods were used to compare the efficiency of PM uptake in two species of coniferous
trees grown along a highway outside Stavanger, Norway [53]. By comparing the PM
content on needles with different age they show that there is a cumulative deposition in
the 2-year lifetime of the needles.

3.2.4. Noise Regulation

Measurements in a large park in Gothenburg revealed that noise levels were reduced
by the emergence of leaves on trees. The results confirm that noise attenuation increases
with distance, and when more greenery separates the walker from the road [50]. Reduced
noise can have substantial health benefits, including the improvement of concentration
problems and better sleep quality when the dwelling´s windows face a green space in
Malmö [54], or beneficial short-term changes in cardiovascular risk factors among visitors
of urban parks in Helsinki [55].

The diversity of relaxing nature sounds have also been associated with benefits to
well-being and health [56,57]. The perception of soundscape in an urban park is also closely
linked to how people perceive its suitability for everyday recreation and psychological
restoration [58–60]. Research suggests that high noise levels, particularly from traffic, are
associated with a low probability of restoration in small urban parks and should be avoided
in the design of such infrastructures [61,62].

3.2.5. Promotion of Well-Being and Health

The well-being and health of urban dwellers are not only intrinsically interconnected,
but are also closely linked to the quality of the environment, of which the accessibility
and use of green areas play an important role. Despite indications that the use of green
spaces increases with the residence proximity (e.g., [63]), and a general recommendation
of maximum 300 m (approximately 5 min walk) from home for the everyday use of
recreational areas [64–67], there is no evidence-based consensus on a maximum distance
that enables benefits to health [68], in line with findings from a review of accessibility
metrics [69].

Similarly, there is an apparent lack of agreement relating the optimal recreation size
of urban green spaces [68], with physical activity levels potentially increasing with park
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size [70], but also small parks as potentiating social cohesion and psychological restora-
tion [71,72].

In fact, an analysis of 72 parks in Oslo, Stockholm and Copenhagen, reveals that, al-
though bigger parks are more likely to offer possibilities for restoration, some of the smallest
parks attain the highest restorative value ratings [71]. Small public urban green spaces
(SPUGS) such as “pocket parks”, with maximum size between 3000 [71] and 5000 m2 [73],
may satisfy the need for everyday outdoor experiences and promote restoration in dense ur-
ban areas, in the example of the “pocket park programme” of Copenhagen [62]. Given the
competition for space in compact cities, green roofs may also offer psychological benefits
for people and habitats for a number of species [74]. Further, the UGI concept embodies an
interconnected network of green spaces [75]. Ecological (or green) corridors are essential for
maintaining interconnected habitats for species and thus biological diversity, while serving
human movements and, therefore, creating recreational experience opportunities, as shown
in Kuopio in Finland [76], Kristianstad in Sweden, and Copenhagen in Denmark [77].

A few indicators or measures of urban nature availability or accessibility have been
developed and/or applied in a Nordic context, including the urban green space indicator
(UGSI) [68] and the walkability index [78], but also combining people´s experiences and
perception of environmental quality through Public Participatory Geographical Information
System (PPGIS) methods [66,67,79–81]. The frequency and purpose of using green spaces
does not depend on simply proximity and size, as indicated by studies in Norway [82],
Denmark [64,83] and Finland [84], pointing to additional factors. A calm environment
(e.g., [85]), sounds of nature (e.g., [86]), aesthetics (e.g., [87]), shading and cooling [67] and,
in general, the contact with nature (e.g., [66]) are values that people look for when visiting
a green area near home.

ES valuation indicates that aesthetic and recreational benefits have the highest eco-
nomic value of all ES [21,88,89]. Such values are, however, perceived in different and subjec-
tive ways. Women and elderly can be more sensitive to aesthetics [56] and express greater
calmness when hearing nature sounds [90]. Additionally, self-rated “nature-oriented”
individuals were shown to score higher the aesthetics and nature sounds than “urban-
oriented” [87]. The aesthetics feature of greenery seem to be also a stimulating factor
for bicycle commuting in inner Stockholm, indicating a positive relation with physical
activity [59].

In overall, the experiences provided by the contact with UGI have positive impacts
on emotional and physical well-being, sleep quality and perception of general health [91].
The most restorative environments for stressed individuals have been characterized by a
combination of “refuge”, “nature”, “rich in species” and a low presence or absence of a
“social” dimension (the latter, interpreted as an environment that is equipped for social
activities) [85]. Gardening with social interaction are, on the other hand, pointed out as
having an important role on stress disorder therapy [92] and contributing to higher quality
of life, especially for elderly [93].

The likelihood of psychological restoration has been shown to increase with the
number of street trees and the presence of flower beds in Iceland [94], while sitting in an
urban park was scored as more likely to support restoration in Sweden, over sitting in a café,
shopping in a mall, or walking along a busy road [95]. Findings from a self-report study
in Helsinki and Tampere, Finland, suggest that restorative experiences in favorite places
near home, including green areas, may be linked to work-related worries [96]. However,
despite positive effects on perceived stress relief caused by short-term visits to nature areas,
no significant differences in the levels of salivary cortisol, a widely utilized stress marker,
were observed in Helsinki [97]. In addition, conclusions from a 8-year follow-up survey
indicate that living far from usable green areas in Finnish cities may increase the risk of
overweight and obesity, which the authors associated with other pathways than physical
activity, such as stress releasing [98].
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3.3. Disservices

Green areas have been identified as a significant source of birch and grass pollen, in
the example of Danish cities [99,100], which is considered a major environmental disservice
of UGI (e.g., [3,6]). In addition, grass pollen distribution is shown to be particularly
heterogeneous, with very high ground-level concentrations near unmanaged grass areas,
adding a higher level of complexity to the study and understanding of these processes.
In this scope, a land use regression study of the Helsinki metropolitan area suggests that
grass pollen concentrations can be estimated with reasonable accuracy using geospatial
data variables [101].

In the Swedish BAMSE birth cohort, greenness in a 500 m buffer zone from home was
positively associated with allergic rhinitis during childhood (6–8 years) and early adoles-
cence (10–12 years), and also with aeroallergen sensitization in the younger group [102].
However, the same study found an inverse association for cohorts in Germany and the
Netherlands, indicating a location dependent effect. In line with these findings, the analysis
of cohorts from Finland and Estonia shows that the amount of forest and agricultural land
within 2–5 km from home was inversely and significantly associated with the risk of atopic
sensitization in children of 6 years of age and older [103]. These results indicate that envi-
ronmental biodiversity affects the composition of the human skin microbiota, which in turn
may protect against atopy and potentially against other chronic inflammatory disorders,
and that early-life exposure to green environments is especially important in this context.

The leaching of nutrients from vegetated roofs has also been pointed out as a potential
negative impact. Runoff water quality analysis on an extensive green roof (3 cm soil
thickness) in Augustenborg associated the phosphorus release to the use of fertilizer and
the composition of soil material [104]. However, when compared with concentrations
in regular urban runoff, green roofs were similar or lower for both nutrients and heavy
metals. Observations of the phosphorus and nitrogen concentrations in the runoff from
green roofs in Helsinki and Lahti (Finland) showed that amending the soil with biochar
retained nutrients after the maturation of the system, also offering higher water holding
capacity than a crushed brick mixture [105].

Detailed assessments of the life cycle of planted urban trees in Helsinki showed that,
due to high C loss from an artificial growth media, net C sequestration did not come about
until after approximately 30 years of tree growth [106]. Consequently, and as a planning
recommendation, green zones should be spacious enough for trees to reach their full size
and thus maximize their C uptake potential [27]. In addition, intensively managed green
areas can likely act as nitrous oxide (N2O) sources, as shown in Helsinki [107].

There are also relevant aspects for city planning and design to be considered, such
as the loss of green space due to the installation of open drainage solutions [38], or the
impairment of sunlight by vegetation in winter [31,34,36], since even leafless deciduous
trees can block up to 60% of direct solar radiation [31].

4. Discussion on Knowledge Gaps

Our review concludes that trees, bushes and other vegetation in cities have the poten-
tial to both increase and decrease the levels of air pollution in Nordic cities, in line with
other studies (see the reviews, e.g., [1,4,7]). These effects are coupled to the UGI’s impact
on natural emissions, its ability to take up gases and particles from the atmosphere, and
changes to the transport by the mean wind and turbulent mixing as a result of the physical
obstruction of flow by the vegetation.

While some measurement studies (e.g., [50,51]) do report lower concentrations of NO2
inside forest patches compared to open areas at similar distance from major roads, most
other studies in the Nordic cities (e.g., [47–49]) find opposite or no differences. The UGI´s
ability to reduce the atmospheric concentrations of coarse PM in Nordic cities seems to be
more certain [46,48,50], although the mechanism and pathway of PM removal from the
atmosphere is yet to be fully established.
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We found no studies specifically addressing emissions of biogenic VOCs (BVOCs)
from trees in Nordic cities. BVOCs may contribute to PM [108] and additional build-up
of near-surface O3. Studies of UGI and near-surface O3 in Nordic cities did, however, not
indicate excess O3 concentrations in connection to UGI, so the problem of detrimental
BVOC emissions in Nordic cities is probably minor.

The majority of the air quality works used “IVL-type” diffusion samplers for the
gaseous compounds and other, similar, passive long-term averaging methods for the deter-
mination of PM concentrations. Although some recent studies (e.g. [109]) complemented
the passive samplers with active high-resolution instruments, our view is that there is
room for additional studies using different measurement techniques and studying different
cities.

In hydrology studies, the lack of multi-year measurements has limited the possibility
of drawing conclusions on the long-term performance of green roofs, nutrient leaching
processes or the effect of biochar [105]. Johannessen et al. [45] emphasized that the under-
standing about Sedum performance in cold and wet climates is deficient, and therefore the
direct transfer of knowledge from drier climates is not sufficient. Additionally, the need
for cost-benefit analyses of technical solutions aimed at handling urban runoff may hinder
practical implementation and management [38,41].

The observed average cooling capacity of Nordic urban parks [29] agrees with data
from other climatic zones [30], but research is limited to a few sites in short-term monitoring
campaigns. There is also a need for long-term flux measurements representative of the cli-
mate and morphology of Nordic cities. The increasing crowd-sourcing of observations (e.g.,
Netatmo Weathermap [110], WeatherObservationsWebsite (WOW) [111] or Temperatur.Nu [112]),
combined with the development of artificial intelligence techniques (e.g., [113]), provides
denser observation networks and enhanced data coverage. Additionally, high-resolution
weather and climate modelling will foster a more detailed understanding of the interactions
urban surface/atmosphere, but issues as the uncertainty in the simulation of evapotranspi-
ration and latent heat flux (e.g., [114]) or the validity of core parameterizations describing
street canyon processes in urban canopy models need to be overcome.

Extensive computation of Tmrt, mostly over large cities in Sweden, has given insights
on the impact of shading on outdoor heat stress, but this parameter provides an incomplete
description of thermal comfort by neglecting other factors of the human heat balance [33,34],
such as the convective cooling of wind. This calls for integrated heat stress indices (e.g.,
the Physiological Equivalent Temperature (PET) or the Universal Thermal Climate Index
(UTCI)), which provide a more comprehensive understanding of the thermal interaction
between the human body and its surroundings, to be further exploited at high latitude
cities. Furthermore, thermal, emotional and perceptual assessments of a physical place
may be intertwined with psychological and cultural processes [115], which the thermal
indices above fail to capture, opening exciting opportunities for multidisciplinary and
interdisciplinary research.

In the same perspective, while GIS and map-based indicators represent efficient plan-
ning tools for mapping and measuring the accessibility to urban recreational areas [58,116],
efforts to complement these with social aspects, namely the people’s perceptions (e.g.,
relating the attractiveness of natural areas [81]), should be promoted. This requires moving
beyond land-use classes, as defined by European datasets (e.g., the Urban Atlas), and
toward tools capable of capturing more detailed aspects of land use and its relations to the
supply of urban ES [117], including cultural ones.

Independently from the primary design purpose of a given UGI solution (e.g., flood
control, the establishment of connectivity, or the promotion of leisure and biodiversity),
the conception and implementation of such type of infrastructure should strive for the
maximization of the co-benefits. These may include providing shade during heat stress
events or damping noise in city centers with heavy traffic. In parallel, there is a need
to account for undesired side effects, namely by ensuring ventilation conditions that
counteract eventual build-up of air pollution hot spots in street canyons, or by selecting
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adequate tree species capable of, e.g., providing good shading coverage in summer while
allowing radiation to penetrate in winter and have low pollen emission.

In our review of the scientific literature, we found a lack of comprehensive and
knowledge-based guidelines or recommendations for the planning and design of UGI
in Nordic cities, despite these being proposed in grey literature (see, e.g., [15]), a lack of
integration also identified by Brink et al. [8]. In practice, site specific cases call for tailored
solutions that account for local conditions and allow for the optimization of ES provision
while minimizing the above-mentioned disservices, but also possible conflicting effects.
Several examples can be referred: (1) While planting trees is widely proposed as an effective
measure to reduce radiant heat load (e.g., [36]) and promote well-being (e.g., [57]), it may
conflict with limited space in densely built-up areas and narrow streets. (2) SPUGS offer
enhanced well-being in dense cities, but the restoration potential may be compromised
by disturbing surroundings, namely traffic noise [61,118], and limited enclosure, which
restrict the psychological distancing from daily routines [94,119]. (3) While, on the one
hand, large deciduous trees are preferred for reducing heat stress [34,36], pine trees, on the
other hand, seem particularly effective in taking up atmospheric PM [52]. (4) Additionally,
unmanaged grass areas favor the accumulation of soil organic C [27], but are a much larger
pollen source than regularly mowed lawns [100]. Intensively managed vegetation has also
been shown to act as a source of GHG, such as N2O and CO2 [106,107].

Generic approaches for the classification and evaluation of the ES of UGI have been
proposed that account also for potential disservices (e.g., [6]), but negative effects are often
neglected in ES valuation studies, to a great extent due to limited understanding of the
underlying processes and resulting impacts. Further, only a few works [21,67,117,120] have
conducted an integrated assessment of both regulating and cultural ES, which limits the
full understanding of the processes and effects involved.

5. Conclusions

Our review addresses two major families of ES, regulating and cultural, because of
their relevance in urban environments. Having in mind the scope of the analysis and
methodological limitations, we conclude that despite the importance of flood regulating
solutions in the Nordic countries, this topic has not dominated the scientific production
in comparison to the other ES analyzed. Our contact with stakeholders shows, however,
that this may not reflect the abundance of grey literature produced on this subject by e.g.,
municipalities. The results confirm that other hazards have triggered relevant research
efforts. Local climate, and heat attenuation in particular, have driven substantial research
in the period covered by the review. Although heat stress studies, and contrarily to urban
flooding, have not been driven by past extreme events motivating an end-user demand,
the awareness of the recent impacts in Sweden of the 2018 heat wave, and the increased
likelihood of similar events in a future climate, will expectably foster the research on the
potential of UGI for climate change adaptation in Northern Europe, in particular during
heat waves.

In our assessment of the scientific evidence, we found diverging and seemingly
inconsistent findings, especially in what concerns air quality. Despite the fact that the
UGI´s ability to reduce the atmospheric concentrations of coarse PM seems more certain,
we did not find support for the general assumption that UGI is unequivocally reducing the
levels of air pollution in Nordic cities, which calls for additional research. There are also
gaps in the understanding of long-term performance and function of green roofs in cold
and wet climates that may create obstacles for practitioners.

Since densification, and the competition over land resources, can potentially compro-
mise the provision of ES, small interconnected green spaces may promote, notably in more
compact cities, the frequent use of green spaces that enables both psychological (through
stress restoration) and physiological health (via physical activity). At the same time, these
should provide a network of natural commuting links that offer cooling (by shading) and
good air quality (by ventilation). In overall, this planning goal clearly states the close
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relationships and interactions among different ES provided by urban greenery, either regu-
lating and cultural. From an urban planning and development perspective, we identify
also a need of accounting for the intense seasonal changes in temperature and radiation,
which stress the importance at this latitude of adopting a year-round strategy, translated
into what is commonly known as climate-sensitive planning. Due to the implications of
local context, no universal rules can be established for such practices, in agreement with
Oke et al. [18].

Finally, the design of UGI, including the selection and arrangement of plants, should
be guided by the assessment of local conditions and vegetation’s specific traits. It should
also balance both the provision of ES and their side effects and disservices, aspects that seem
to have been only marginally investigated, yet being fundamental for a full understanding
of the role and performance of UGI in this region. We conclude that the difficulty in valuing
trade-offs and side-effects will ultimately have practical implications and may compromise
the implementation of UGI by municipalities. The scarce number of articles appraised
explicitly involving end users or stakeholders points to a need of better engagement and
communication.

Notwithstanding the intricacies and synergies between regulating and cultural ES, few
studies in our selection accomplished, or have even attempted, an integrated evaluation.
We argue that promoting interdisciplinary studies is fundamental to attain a holistic under-
standing of how plant traits affect the resulting ES; of the synergies between biophysical,
physiological and psychological processes; and of the potential disservices of UGI.

With this overall perspective, a debate on how to optimize the benefits of urban nature
in Nordic cities under the challenges of urbanization and climate change, while accounting
for regional and local specificities, should be further endorsed by the research community,
practitioners and decision makers.
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Appendix A

Table A1. The search string takes the general form A AND B AND C AND D, where A stands for
keywords characterizing the geographical location, B is the spatial unit, C the UGI type, and D the
topic. Keywords are separated by OR in the string, and * is a wildcard character.

A
nord*, ”Northern Europe”, Scandinavia*, Swed*, Denmark, Danish, Finland, Finnish,

Iceland*, Norw*, Stockholm, Gothenburg, Malmö, Copenhagen, Oslo, Helsinki,
Helsingfors, Reykjavik

B city, cities, *urb*, metropolitan, hous*, building, town, street, wall, façade, roof, surface,
catchment

C

vegetati*, plant, green*, “green infrastructure”, UGI, “green urban infrastructure”,
“nature-based solutions”, NbS, “ecosystem services”, “ecosystem-based adaptation”,

EbA, “urban forest”, “urban woodland”, park, garden, tree, courtyard, farm, lawn, leaf,
leaves, foliage, canopy, Betula, Birch, Tilia, Linden, Lime, Acer, Maple, Platanus, Plane,
Quercus, Oak, Aesculus, “Horse chestnut”, Fraxinus, Ash, Pinus, Pine, Prunus, Cherry,

Populus, Poplar, Ulmus, Elm, grass, Sedum

D

health, wellbeing, well-being, comfort, climate, adapt*, heat, UHI, temperature, thermal,
shad*, cool, PCI, evaporation, *transpiration, wind, ventilation, turbulen*, noise, flux,

mixing, *water, flood*, rain*, precipitation, cloudburst, runoff, drain*, detain,
percolation, infiltration, “air quality”, “air pollution”, particle, “particulate matter”, PM,

PM10, PM2.5, BPM, “organic compound”, *VOC, isoprene, monoterpene, “carbon
dioxide”, CO2, “carbon monoxide”, ozone, O3, “nitrogen oxides”, NOx, “nitrogen
monoxide”, “nitric oxide”, “nitrogen dioxide”, NO2, “nitrous oxide”, N2O, “sulfur

dioxide”, SO2, methane, CH4, aerosol, carbon, pollen, allergen*

Table A2. Database fields (“Nd” stands for undetermined or unspecified).

Fields Options

Country Nd (e.g., Northern Europe or Scandinavia);
Denmark; Finland; Iceland; Norway; Sweden

City or region (text entry)
Geographical scale Nd; building; neighborhood; city; region; country

Spatial resolution (applies essentially to modelling) Nd; <1 m; 1–10 m; 11–100 m; 101–1000 m; 1–10 km;
>10 km

Timescale
Nd; <24 h (very short term); 1–6 days (short term);

1–3 weeks; 1–3 months; 4–6 months (seasonal); 7–12
months; >1 year (long term); >10 years (decadal)

UGI type
Nd; street trees; urban park or forest; garden;

courtyard; square; lawn; green-roof; green-wall;
urban farm; other

Topic
Nd; local climate (including heat); global climate; air

quality; water runoff (including flooding); noise;
health; well-being; pollen; other

Quantitative method

None; field campaign; existing observation network;
satellite; wind tunnel; other experimental; local scale

model; mesoscale model; statistical model or
analysis; other

Qualitative method None; survey/questionnaire/interview; any other
form of meeting; other

Identified limitations or obstacles (text entry)
Identified knowledge gaps (text entry)

Identified future projections None; climate projections; emissions projections;
urban planning scenarios; other

Effect/impact quantification (text entry)
Identified disservices (text entry)

Identified climate adaptation solutions (text entry)
End users or stakeholders involved/addressed (text entry)

Identified planning recommendations (text entry)
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Table A3. Classification of papers reviewed per topic (shaded cells).
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